Characterization of PNN Stack SRAM Cell at Deep Sub-Micron Technology with High Stability and Low Leakage for Multimedia Applications

نویسندگان

  • Shilpi Birla
  • Manisha Pattanaik
  • Zhiyu Liu
  • Volkan Kursun
  • Sheng Lin
  • Yong-Bin Kim
  • Zheng Guo
  • Andrew Carlson
  • Liang-Teck Pang
  • Kenneth Duong
  • Tsu-Jae King Liu
  • Borivoje Nikolic
چکیده

The explosive growth of battery operated devices has made lowpower design a priority in recent years Moreover, embedded SRAM units have become an important block in modern SoCs. Present day SRAMs are striving to increase bit counts while maintaining low power consumption and high performance. To achieve these objectives there is a need of continuous scaling of CMOS transistors, and so the process technology scaling and need for better performance enabled embedding of millions of Static Random Access Memories (SRAM) cells into modernday ICs. In several applications, the embedded SRAMs can occupy the majority of the chip area and contain hundreds of millions of transistors. As the process technology continues to scale deeper into the nanometer region, the stability of embedded SRAM cells is a growing concern. The supply voltage must scale down accordingly to control the power consumption and maintain the device reliability. Scaling the supply voltage and minimum transistor dimensions that are used in SRAM cells challenge the process and design engineers to achieve reliable data storage in SRAM arrays. This task is particularly difficult in large SRAM arrays that can contain millions of bits .In this paper we proposed a novel 9T SRAM cell with the objective to increase the stability and reduce the leakage for multimedia mobile applications at deep submicron level. All the Simulations are done at 45nm technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Analysis of a Novel Low-Power SRAM Bit-Cell Structure at Deep-Sub-Micron CMOS Technology for Mobile Multimedia Applications

The growing demand for high density VLSI circuits and the exponential dependency of the leakage current on the oxide thickness is becoming a major challenge in deep-submicron CMOS technology. In this work, a novel Static Random Access Memory (SRAM) Cell is proposed targeting to reduce the overall power requirements, i.e., dynamic and standby power in the existing dual-bit-line architecture. The...

متن کامل

Characterization of 9 T SRAM Cell at Various Process Corners at Deep Sub - micron Technology for Multimedia Applications

In the past decades CMOS IC technologies have been constantly scaled down and at present they aggressively entered in the nanometer regime. Amongst the wide-ranging variety of circuit applications, integrated memories especially the SRAM cell layout has been significantly reduced. As it is very well know the reduction of size of CMOS involves an increase in physical parameters variation, this i...

متن کامل

Characterization of a Novel Low-Power SRAM Bit-Cell Structure at Deep Sub-Micron CMOS Technology for Multimedia Applications

To meet the increasing demands for higher performance and low-power consumption in present and future Systemson-Chips (SoCs) require a large amount of on-die/embedded memory. In Deep-Sub-Micron (DSM) technology, it is coming as challenges, e.g., leakage power, performance, data retentation, and stability issues. In this work, we have proposed a novel low-stress SRAM cell, called as IP3 SRAM bit...

متن کامل

Low-Power SRAM Cell at Deep Sub-Micron CMOS Technology for Multimedia Applications

Our life is filled by various modern electronic products. Semiconductor memories are essential parts of these products and have been growing in performance and density in accordance with Moore’s law like all silicon technology. The process technology has been scaling down from last two decades and to get the functional and high yielding design beyond 100-nm feature sizes the existing design app...

متن کامل

Ip-sram Architecture at Deep Submicron Cmos Technology – a Low Power Design

The growing demand for high density VLSI circuits the leakage current on the oxide thickness is becoming a major challenge in deep-sub-micron CMOS technology. In deep submicron technologies, leakage power becomes a key for a low power design due to its ever increasing proportion in chip‟s total power consumption. Motivated by emerging battery-operated application on one hand and shrinking techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011